Sehinggategangan sebesar V tersebut dibagikan ke empat hambatan yang mana masing-masing V1,V2,V3 dan V4 maka akan berlaku : V = V1 + V2 + V3 + V4. Keterangan : V1 = Tegangan 1 V2 = Tegangan 2 V3 = Tegangan 3 V4 = Tegangan 4. Jika dilihat berdasarkan Hukum I Kirchoff pada rangkaian seri) berlaku persamaan berikut : I = I1 = I2 = I3 = I4. Keterangan :
FisikaPengukuran Kelas 10 SMAPengukuranBesaran, Satuan dan DimensiEmpat buah resistor dihubungkan secara seri, nilai setiap resistor hasil pengukuran berturut-turut adalah 14,3 + 0,1 ohm; 4,25 + 0,01 ohm; 24,105 + 0,001 ohm; 32,45 + 0,01 ohm. Tentukan hambatan total dengan Satuan dan DimensiPengukuranPengukuranFisikaRekomendasi video solusi lainnya0058Besar tetapan Planck adalah 6,6 X 10^-34 Js. Dimensi da...0245[MJ[L][T]^-2 menunjukan dimensi dari ...0223Suhu tubuh seorang yang sedang sakit panas mencapai 104 F... ContohSoal Kapasitor Rangkaian Seri Dan Paralel Soal 1 dua buah kapasitor c 1 17mf c 2 33mf dan dihubungkan dengan baterai 90 v. Contoh soal yang dibahas mencakup kapasitas kapasitor keping sejajar energi potensial kapasitor dan menentukan kapasitas gabungan kapasitor yang dirangkai seri dan paralel. Resistor r 6 dan r 2345 paralel maka r Dalam teknik listrik dan elektronika sangat penting untuk mengetahui perbedaan rangkaian seri dan paralel. Rangkaian seri dan paralel adalah dua bentuk paling dasar dari rangkaian listrik dan yang lainnya adalah rangkaian seri-paralel, yang merupakan kombinasi keduanya, dapat dipahami dengan menerapkan aturan yang sama. Memahami konfigurasi rangkaian ini akan membantu Kamu dalam menganalisis rangkaian dan dengan bantuan beberapa aturan dasar, Kamu dapat dengan mudah menghitung arus dan tegangan setiap komponen. Sebelum membahas perbedaannya, pertama-tama kita akan membahas hal – hal mendasar mengenai rangkaian seri dan paralel terlebih dahulu. Apa itu Rangkaian Seri? Suatu rangkaian dikatakan rangkaian seri jika komponen-komponennya dihubungkan dalam konfigurasi seri atau formasi berjenjang dalam satu jalur. Rangkaian seri membentuk jalur yang hanya memiliki satu loop, oleh karena itu, arus yang mengalir melalui komponen adalah sama dan tegangan terbagi tergantung pada resistansi masing-masing komponen. Ciri – ciri dari rangkaian seri adalah Jika suatu rangkaian terdiri dari lebih dari satu komponen dan jika semuanya terhubung ujung ke ujung sehingga arus yang sama mengalir melalui semuanya, maka rangkaian tersebut dikenal sebagai Rangkaian Seri. Jika kita mengambil komponen listrik yang paling sederhana yaitu Resistor sebagai contoh, maka rangkaian dibawah ini menunjukkan empat resistor yang dihubungkan secara Seri dengan sumber tegangan. Hanya ada satu jalur untuk arus mengalir dalam rangkaian seri. Seperti yang dapat Kita lihat pada contoh rangkaian seri di atas bahwa komponen mengalir dalam satu baris, sehingga arus yang sama akan mengalir melalui semua resistor dari jalur seri. Sementara perbedaan potensial yang berbeda ada pada resistor dari rangkaian tersebut. Dapat dipahami dengan cara bahwa jika arus yang sama mengalir di antara semua resistor, maka penurunan pada setiap resistor akan tergantung pada resistansi yang diberikan oleh masing-masing resistor dalam rangkaian. Dengan demikian, kita dapat mengatakan bahwa, dalam rangkaian seri karena adanya jalur tunggal, arus yang sama mengalir melalui semua komponen. Sehingga menimbulkan adanya perbedaan potensial tegangan yang berbeda pada setiap komponen. Apa itu Rangkaian Paralel? Dalam rangkaian seri, hanya ada satu jalur untuk arus mengalir. Komponen disusun sedemikian rupa sehingga kepala masing-masing komponen dihubungkan bersama dengan titik yang sama. Sedangkan ekor-ekornya dihubungkan satu sama lain dengan titik yang sama. Dengan demikian membentuk beberapa cabang paralel di sirkuit. Gambar di bawah ini menunjukkan koneksi paralel dari 4 resistor dalam suatu rangkaian Seperti yang kita lihat pada contoh rangkaian paralel di atas bahwa rangkaian paralel memiliki 4 cabang dan arus yang berbeda mengalir melalui setiap cabang. Tetapi karena cabang-cabang itu berbagi titik yang sama, maka potensial yang sama ada di dua titik di kedua ujung potensial baterai. Hal ini juga dapat dipahami dengan cara bahwa jika perbedaan potensial yang sama ada di setiap resistor dari rangkaian. Maka arus aktual yang mengalir melalui setiap cabang secara otomatis akan tergantung pada hambatan yang ditawarkan oleh masing-masing resistor dalam rangkaian. Oleh karena itu, kita dapat mengatakan bahwa karena adanya beberapa cabang di sirkuit, arus keseluruhan dari suplai akan dibagi menjadi beberapa cabang, karena tegangan yang melintasi titik adalah sama. Tabel Perbedaan Rangkaian Seri Dan Paralel Tabel dibawah ini menunjukkan perbandingan dan ciri-ciri rangkaian seri dan paralel. Rangkaian SeriRangkaian Paralel Dalam rangkaian seri, arus yang sama mengalir melalui semua rangkaian paralel, arus dapat memiliki lebih dari satu jalur. Semua komponen terhubung secara end-to-end dengan hanya satu titik common antara satu ujung dari semua komponen secara paralel terhubung ke titik yang sama dan ujung lainnya ke titik common lainnya. Jadi, rangkaian paralel memiliki dua titik yang sama. Tegangan di seluruh komponen tidak sama dan tergantung pada resistansi di semua komponen dalam rangkaian paralel adalah sama dan sama dengan tegangan suplai. Jika salah satu komponen rusak dalam rangkaian seri, maka seluruh rangkaian berhenti berfungsi karena hanya ada satu jalur jika salah satu cabang paralel rusak, cabang lainnya tetap bekerja secara normal. Arus sama di semua komponen dan jumlah tegangan individu sama dengan tegangan sama di semua komponen secara paralel dan jumlah arus individu sama dengan arus total dalam rangkaian. Jika kita memiliki empat resistor yang dihubungkan secara seri, maka resistansi ekivalen adalah jumlah dari resistansi individu R = R1 + R2 + R3 + R4.Jika kita menghubungkan empat resistor secara paralel, maka kebalikan dari resistansi ekivalen sama dengan jumlah kebalikan dari resistansi individu 1/R = 1/R1 + 1/R2 + 1/R3 + 1/R4 Kesimpulan Rangkaian Seri dan Paralel adalah dua bentuk dasar rangkaian listrik. Pemahaman yang jelas tentang kedua sirkuit ini akan membantu Kamu menganalisisa sirkuit kompleks apa pun dengan sangat mudah. Jadi, dari pembahasan ini, kita dapat mengatakan bahwa, pada rangkaian seri, arus yang mengalir tetap sama di setiap bagian rangkaian. Sedangkan pada rangkaian paralel, tegangan pada dua titik ujung cabang sama dengan tegangan yang disuplai. Temukan berbagai informasi dan contoh rangkaian seri dan paralel lainnya di www. Pelajari materi lainnya Perbedaan Rangkaian Terbuka Dan Tertutup Pipin Prihatin Whether you think you can or you think you can’t, you’re right.

23 SPMB 2006 Kode 521 Sebuah amperemeter mempunyai hambatan dalam 0,9Ω dan batas ukur maksimum 100 mA. Agar amperemeter dapat digunakan untuk mengukur arus 1 A maka pada amperemeter perlu dipasang resistor . A. 0,1Ω secara seri B. 0,1Ω secara paralel C. 0,1Ω secara seri dan paralel D. 1Ω secara seri E. 1Ω secara paralel

Hai Kevin, jawaban soal ini adalah 0,0035, 0,0024, 0,000018 dan 0,0001. Diketahui R1=28,4±0,1Ω R2=4,25±0,01 Ω R3=56,605±0,001 Ω R4=90,75±0,01 Ω. Ditanya KPR=...? Jawab Ketelitian merupakan kesesuaian diantara beberapa data pengukuran yang sama yang dilakukan secara berulang. Ketidakpastian relatif KPR atau kesalahan relatif adalah ukuran ketidakpastian pengukuran dibandingkan dengan ukuran pengukuran. Ketidakpastian relatif berhubungan dengan ketelitian pengukuran. Semakin kecil nilai ketidakpastian relatif maka nilai ketepatan pengukuran semakin tinggi. KPR dirumuskan dengan KPR= ∆R/Ro dimana Ro= pembacaan alat ukur ∆R= ketelitian Sehingga KPR1= ∆R/Ro KPR1= 0,1/28,4 KPR1= 0,0035 KPR2= ∆R/Ro KPR2= 0,01/4,25 KPR2= 0,0024 KPR3= ∆R/Ro KPR3= 0,001/56,605 KPR3= 0,000018 KPR4= ∆R/Ro KPR4= 0,01/90,75 KPR4= 0,0001 Jadi, KPR masing-masing hambatan adalah 0,0035, 0,0024, 0,000018 dan 0,0001. Selanjutnya R 1 ditulis R s (R seri) sehingga R s = R 1 + R 2 ++R n, dengan n = jumlah resistor. Jadi, jika beberapa buah hambatan dirangkai secara seri, nilai hambatannya bertambah besar. Akibatnya, kuat arus yang mengalir makin kecil. Hal inilah yang menyebabkan nyala lampu menjadi kurang terang (agak redup) jika dirangkai secara seri.
Empat resistor dihubungkan secara seri. Nilai masing-masing resistor berturut-turut adalah 28,4 ± 0,1 ; 4,25 ± 0,01 ; 56,605 ± 0,001 ; dan 90,75 ± 0,01 . Tentukan hambatan total berikut = R1 + R2 + R3 + R4 = 28,4 + 4,25 + 56,605 + 90,75 = 180,005Rtot = 180,0 Jadi hambatan totalnya adalah R ± R = 180,0 ± 0,1 -Semoga BermanfaatJangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! 😁
ContohSoal Sobat punya empat buah hambatan yang masing-masing bernilai 50 ohm dan dirangkai secara seri. Kemudian pada ujung-ujungnya dihubungkan dengan sumber tegangan 30 Volt. Tentukanlah kuat arus yang mengalir pada rangkaian tersebut! Ilustrasi Soal. Jawab. Pada rangkaian seri besarnya kuat arus pada tiap-tiap hambatan adalah sama besar. Tegangan pada setiap resistor dalam rangkaian seri berbeda tergantung pada nilai resistansi. Jadi, tegangan tidak konstan secara seri. Hanya resistor bernilai sama yang dapat menghasilkan penurunan tegangan yang menggunakan kata 'konstan' untuk menentukan nilai tetap dari kuantitas yang tetap tidak berubah. Tegangan tidak pernah bisa menjadi parameter konstan dalam rangkaian listrik apa pun. Setiap resistor memiliki penurunan tegangan yang berbeda melalui mereka dalam kombinasi seri. Oleh karena itu, tegangan dalam rangkaian seri tidak sama atau konstan. Apa itu rangkaian seri? Menjelaskan hambatan arus dan hambatan ekivalen pada rangkaian kita menghubungkan beberapa resistor atau parameter impedansi dalam saluran satu demi satu, itu disebut rangkaian seri. Kombinasi seri memiliki arus yang sama di mana-mana di ekuivalen dalam pola seri adalah jumlah dari semua impedansi individu. Tegangan turun melalui semua resistor dijumlahkan dengan tegangan total. Tegangan jatuh melalui setiap komponen dalam rangkaian berbeda. Penurunan tegangan ini dihitung dengan mengalikan arus total dengan nilai lebih lanjut tentang .... fungsi rangkaian seriBagaimana cara menghitung tegangan pada rangkaian seri? Jelaskan dengan contoh di atas menggambarkan rangkaian seri sederhana dengan tiga resistor 5 ohm, 10 ohm dan 20 ohm. Tujuan kami adalah untuk menemukan tegangan jatuh melalui mereka. Pertama-tama kita akan mencari tahu resistansi ekivalen R = R1+R2+R3= 5+20+10= 35 ohmJadi, arus total = tegangan total / resistansi ekivalen = 10/35 = ampTegangan melalui resistor 5 ohm = 5 * = VoltTegangan melalui resistor 10 ohm = 10 * = VoltTegangan melalui resistor 20 ohm = 20 * = VoltBagaimana tegangan mempengaruhi arus pada rangkaian seri?Setiap resistor pada rangkaian seri menerima arus yang sama pada sambungan seri. Kami menghitung penurunan tegangan pada mereka menggunakan nilai resistor yang diketahui. Rangkaian seri adalah sambungan dari beberapa elemen impedansi. Jadi, jika rangkaian putus setiap saat, seluruh rangkaian rusak dan tidak ada arus yang mengalir. Contoh yang sangat umum dari hal ini adalah sambungan seri bohlam dengan luminositas yang berbeda. Jika kita terus menambahkan lebih banyak bohlam, kecerahan akhirnya tegangan total V pada rangkaian seri yang ditunjukkan di bawah yang digambarkan di atas menunjukkan empat resistor yang dihubungkan secara seri. Sebuah baterai hadir di sirkuit dengan tegangan V yang tidak diketahui. Aliran arus adalah amp. Kita harus mencari nilai jatuh melalui resistor 6 ohm = 6 * = VoltTegangan jatuh melalui resistor 8 ohm = 8 * = 2 VoltTegangan jatuh melalui resistor 10 ohm = 10 * = VoltTegangan jatuh melalui resistor 12 ohm = 12 * = 3 VoltJadi, tegangan total baterai = V= = 9 VoltApa aplikasi tegangan seri?Sirkuit seri dan paralel dianggap sebagai blok bangunan desain sirkuit. Mereka biasanya digunakan untuk banyak aplikasi pembatas arus seperti pembagian tegangan, bias transistor, pada rangkaian seri memiliki aplikasi yang bervariasi. Beberapa aplikasi umum dari tegangan seri adalah-Rangkaian pembagi teganganBaterai remote TVAlarm kebakaranFilter analogSirkuit resonansiFilter saluran listrikSenar bola lampu LEDKomponen internal kendaraan otomotifBagaimana kita dapat menemukan tegangan individu dalam rangkaian seri?Tegangan individu resistor dalam rangkaian seri diperoleh dari total arus dikalikan dengan nilai resistor. Misalkan, ada dua resistor R1 Dan R2 dihubungkan seri dengan baterai V. Oleh karena itu, resistansi ekivalen Req adalah R1+R2. Jadi, tegangan pada setiap resistor = nilai resistor x arus totalTegangan pada R1 = V1 = VR1 /R1+R2 VoltTegangan pada R2 = V2 = VR2 /R1+R2 VoltApakah tegangan seri sama?Tegangan tidak sama atau konstan pada rangkaian seri. Penurunan tegangan melalui setiap resistor berbeda dalam semua kasus kecuali satu di mana semua resistor dalam jaringan seri memiliki nilai yang resistor dalam rangkaian memiliki nilai yang sama, maka hanya penurunan tegangan yang akan sama untuk semua resistor. Misalkan, dalam rangkaian berisi tiga resistor, semua resistor adalah R ohm. Nilai resistansi ekivalen = R+R+R = 3R. Tegangan pada setiap resistor = V*R/3R= V/3 tegangan seri dengan contoh satu contoh yang sangat menarik dari rangkaian seri dalam kehidupan praktis adalah pencahayaan pohon natal klasik. Dalam pencahayaan ini, banyak bola lampu kecil dihubungkan secara menggunakan lampu ini selama bertahun-tahun. Kita dapat melihat bahwa bagian tertentu dari lampu tidak bekerja. Ini karena koneksi seri. Lampu adalah kombinasi dari banyak string yang terhubung seri tersebut. Jadi, bahkan jika satu bohlam dalam jaringan rusak, seluruh bagian berhenti bekerja.“Ini musimnya” by DonkerDink dilisensikan dengan CC BY-NC-ND
Untukresistor dengan toleransi 10% dan 5% digunakan empat buah cincin dan tanpa warna toleransinya 20%. Berikut adalah data warna, angka, dan toleransi pada resistor. dan R3 dihubungkan seri. Tiap muatan yang melalui R1 akan melalui R2 dan R3, sehingga arus i yang melalui R1 , R2 , dan R3 haruslah sama karena muatan tak dapat berubah
Resistor dikatakan terhubung secara seri ketika mereka dirangkai bersama dalam satu baris sehingga arus umum mengalir melalui mereka. Resistor individu dapat dihubungkan bersama baik dalam koneksi seri, koneksi paralel atau kombinasi seri dan paralel, untuk menghasilkan jaringan resistor yang lebih kompleks yang resistansi setara adalah kombinasi matematika dari masing-masing resistor yang terhubung bersama. Sebuah resistor bukan hanya komponen elektronik dasar yang dapat digunakan untuk mengubah tegangan menjadi arus atau arus menjadi tegangan, tetapi dengan menyesuaikan nilainya dengan benar, besar yang berbeda dapat ditempatkan pada arus yang dikonversi dan/atau tegangan yang memungkinkannya. untuk digunakan dalam rangkaian dan aplikasi referensi tegangan. Resistor dalam jaringan seri atau rumit dapat diganti dengan satu resistor ekuivalen tunggal, REQ atau impedansi, ZEQ dan tidak peduli apa kombinasi atau kompleksitas jaringan resistor, semua resistor mematuhi aturan dasar yang sama seperti yang didefinisikan oleh Hukum Ohm dan Hukum Rangkaian Kirchoff. Resistor Dalam Seri Resistor dikatakan terhubung dalam "Seri", ketika mereka dirangkai bersama dalam satu baris. Karena semua arus yang mengalir melalui resistor pertama tidak memiliki cara lain untuk pergi, ia juga harus melewati resistor kedua dan ketiga dan seterusnya. Kemudian, resistor dalam rangkaian seri memiliki Arus Bersama yang mengalir melalui mereka sebagai arus yang mengalir melalui satu resistor juga harus mengalir melalui yang lain karena hanya dapat mengambil satu jalur. Maka jumlah arus yang mengalir melalui serangkaian resistor dalam seri akan sama di semua titik dalam jaringan resistor seri. Sebagai contoh IR1 = IR2 = IR3 = IAB =1mA Dalam contoh berikut, resistor R1, R2 dan R3 semuanya dihubungkan bersama secara seri antara titik A dan B dengan arus yang sama, saya mengalir melalui mereka. Rangkaian Resistor dalam Seri Sebagai resistor dihubungkan bersama dalam seri berlalu saat yang sama melalui masing-masing resistor dalam rantai dan resistansi total, RT dari rangkaian harus sama dengan jumlah dari semua resistor individu ditambahkan bersama-sama. Itu adalah RT = R1 + R2 + R3 dan dengan mengambil nilai-nilai individual dari resistor dalam contoh sederhana kami di atas, total resistansi yang setara, maka REQ diberikan sebagai REQ = R1 + R2 + R3 = 1k + 2k + 6k = 9k Jadi kita melihat bahwa kita dapat mengganti ketiga resistor individual di atas hanya dengan satu resistor “setara” tunggal yang akan memiliki nilai 9k. Di mana empat, lima atau bahkan lebih resistor semua terhubung bersama dalam rangkaian seri, ekuivalen atau total resistansi dari rangkaian, RT akan tetap menjadi jumlah dari semua resistor individu yang terhubung bersama-sama dan resistor selanjutnya ditambahkan ke seri, lebih besar resistansi setara tidak peduli berapa nilainya. Resistansi total ini umumnya dikenal sebagai Resistansi Ekuivalen setara dan dapat didefinisikan sebagai; "Nilai resistansi tunggal yang dapat menggantikan sejumlah resistor secara seri tanpa mengubah nilai arus atau tegangan dalam rangkaian". Maka persamaan yang diberikan untuk menghitung resistansi total dari rangkaian saat menghubungkan bersama resistor secara seri diberikan sebagai Persamaan Resistor Seri RTotal = R1 + R2 + R3 +….. Rn dst. Perhatikan kemudian bahwa resistansi total atau setara, RT memiliki efek yang sama di rangkaian sebagai kombinasi asli dari resistor karena merupakan jumlah aljabar dari resistansi individu. Jika dua resistansi atau impedansi dalam seri adalah sama dan dari nilai yang sama, maka resistansi total atau setara, RT sama dengan dua kali nilai satu resistor. Itu sama dengan 2R dan untuk tiga resistor sama dalam seri, 3R, dll. Jika dua resistor atau impedansi seri tidak sama dan nilai-nilai yang berbeda, maka resistansi total atau setara, RT adalah sama dengan jumlah matematika dari dua resistansi. Itu sama dengan R1 + R2. Jika tiga atau lebih resistor yang tidak sama atau sama dihubungkan secara seri maka resistansi yang setara adalah R1 + R2 + R3 +…, dll. Satu poin penting untuk diingat tentang resistor di jaringan seri untuk memeriksa apakah matematika Anda benar. Resistansi Total RT dari dua atau lebih resistor yang dihubungkan bersama dalam seri akan selalu LEBIH BESAR dari nilai resistor terbesar dalam deretan. Dalam contoh kami di atas RT = 9k di mana sebagai nilai resistor terbesar hanya 6k. Tegangan Resistor Seri Tegangan di setiap resistor yang terhubung dalam seri mengikuti aturan yang berbeda dengan yang ada pada arus seri. Kita tahu dari rangkaian di atas bahwa total tegangan supply melintasi resistor sama dengan jumlah perbedaan potensial pada R1, R2 dan R3, VAB = VR1 + VR2 + VR3 = 9V. Dengan menggunakan Hukum Ohm, tegangan pada masing-masing resistor dapat dihitung sebagai Tegangan melintasi R1 = IR1 = 1mA x 1k = 1V Tegangan melintasi R2 = IR2 = 1mA x 2k = 2V Tegangan melintasi R3 = IR3 = 1mA x 6k = 6V memberikan tegangan total VAB dari 1V + 2V + 6V = 9V yang sama dengan nilai tegangan supply. Kemudian jumlah dari perbedaan potensial di resistor sama dengan total perbedaan potensial di seluruh kombinasi dan dalam contoh kita ini adalah 9V. Persamaan yang diberikan untuk menghitung tegangan total dalam rangkaian seri yang merupakan jumlah dari semua tegangan individu yang ditambahkan bersama diberikan sebagai VTotal = VR1 + VR2 + VR3 +….. VN Kemudian jaringan resistor seri juga dapat dianggap sebagai "pembagi tegangan" dan rangkaian resistor seri yang memiliki komponen resistif N akan memiliki tegangan N-berbeda di atasnya sambil mempertahankan arus yang sama. Dengan menggunakan Hukum Ohm, baik tegangan, arus atau resistansi dari rangkaian seri yang terhubung dapat dengan mudah ditemukan dan resistor dari rangkaian seri dapat dipertukarkan tanpa mempengaruhi resistansi total, arus, atau daya ke masing-masing resistor. Contoh Resistor dalam Seri Dengan menggunakan Hukum Ohm, hitung resistansi seri yang setara, arus seri, penurunan tegangan, dan daya untuk setiap resistor di resistor berikut di rangkaian seri. Semua data dapat ditemukan dengan menggunakan Hukum Ohm, dan untuk membuat perhitungan sedikit lebih mudah, kami dapat menyajikan data ini dalam bentuk tabel. Resistansi Arus Tegangan Daya R!1 = 10 I1 = 200mA V1 = 2V P1 = R2 = 20 I2 = 200mA V2 = 4V P2 = R3 = 30 I3 = 200mA V3 = 6V P3 = RT = 60 IT = 200mA VS = 12V PT = Kemudian untuk rangkaian di atas, RT = 60, IT = 200mA, VS = 12V dan PT = Rangkaian Pembagi Tegangan Kita dapat melihat dari contoh di atas, bahwa meskipun tegangan supply diberikan sebagai 12 volt, tegangan yang berbeda, atau penurunan tegangan, muncul di setiap resistor dalam jaringan seri. Dengan menghubungkan resistor secara seri seperti diatas pada satu supply DC memiliki satu keuntungan besar, yaitu tegangan yang berbeda muncul di setiap resistor yang menghasilkan rangkaian yang sangat berguna yang disebut Jaringan Pembagi Tegangan. Rangkaian sederhana ini membagi tegangan supply secara proporsional di setiap resistor dalam rantai seri dengan jumlah penurunan tegangan yang ditentukan oleh nilai resistor dan seperti yang kita ketahui sekarang, arus melalui rangkaian resistor seri adalah umum untuk semua resistor. Jadi resistansi yang lebih besar akan memiliki drop tegangan yang lebih besar di atasnya, sedangkan resistansi yang lebih kecil akan memiliki drop tegangan yang lebih kecil di atasnya. Rangkaian resistif seri yang ditunjukkan di atas membentuk jaringan pembagi tegangan sederhana yaitu tiga tegangan 2V, 4V dan 6V dihasilkan dari supply 12V tunggal. Hukum Kirchoff 2 -Tegangan menyatakan bahwa "tegangan supply dalam rangkaian tertutup sama dengan jumlah semua penurunan tegangan I*R di sekitar rangkaian" dan ini dapat digunakan untuk efek yang baik. Aturan Pembagi Tegangan, memungkinkan kita untuk menggunakan efek resistansi proporsionalitas untuk menghitung beda potensial pada setiap resistansi terlepas dari arus yang mengalir melalui rangkaian seri. "rangkaian pembagi tegangan" tipikal ditunjukkan di bawah ini. Jaringan Pembagi Tegangan Rangkaian yang ditampilkan hanya terdiri dari dua resistor, R1 dan R2 yang dihubungkan bersama secara seri pada tegangan supply Vin. Satu sisi tegangan catu daya terhubung ke resistor, R1, dan output tegangan, Vout diambil dari resistor R2. Nilai tegangan output ini diberikan oleh rumus yang sesuai. Jika lebih banyak resistor dihubungkan secara seri ke rangkaian, maka tegangan yang berbeda akan muncul di masing-masing resistor secara bergantian berkaitan dengan nilai resistansi masing-masing R Hukum Ohm I*R yang memberikan titik tegangan yang berbeda tetapi lebih kecil dari satu supply tunggal. Jadi jika kita memiliki tiga atau lebih resistansi dalam rantai seri, kita masih bisa menggunakan rumus pembagi potensial yang sudah kita kenal untuk menemukan penurunan tegangan di masing-masing. Pertimbangkan rangkaian di bawah ini. Rangkaian pembagi potensial di atas menunjukkan empat resistansi dihubungkan bersama adalah seri. Penurunan tegangan melintasi titik A dan B dapat dihitung menggunakan rumus pembagi potensial sebagai berikut Kita juga dapat menerapkan ide yang sama untuk sekelompok resistor dalam rantai seri. Sebagai contoh jika kita ingin menemukan penurunan tegangan di kedua R2 dan R3 bersama-sama kita akan mengganti nilainya di pembilang atas rumus dan dalam hal ini jawaban yang dihasilkan akan memberi kita 5 volt 2V + 3V. Dalam contoh yang sangat sederhana ini tegangan bekerja dengan sangat rapi sebagai drop tegangan resistor sebanding dengan resistansi total, dan sebagai resistansi total, RT dalam contoh ini adalah sama dengan 100 atau 100%, resistor R1 adalah 10% dari RT, sehingga 10% dari sumber tegangan VS akan muncul di atasnya, 20% dari VS di seluruh resistor R2, 30% di seluruh resistor R3, dan 40% dari tegangan supply VS di resistor R4. Penerapan hukum Kirchoff 2 - tegangan KVL di sekitar jalur loop tertutup menegaskan hal ini. Sekarang mari kita anggap kita ingin menggunakan dua rangkaian pembagi potensial resistor di atas untuk menghasilkan tegangan yang lebih kecil dari tegangan supply yang lebih besar untuk memberi daya pada rangkaian elektronik eksternal. Misalkan kita memiliki supply 12V DC dan rangkaian kita yang memiliki impedansi 50 hanya membutuhkan supply 6V, setengah dari tegangan. Menghubungkan dua resistor bernilai sama, masing-masing katakanlah 50, bersama-sama sebagai jaringan pembagi potensial di 12V akan melakukan ini dengan sangat baik sampai kita menghubungkan rangkaian beban ke jaringan. Hal ini karena efek pembebanan dari resistor RL terhubung secara paralel di R2 mengubah rasio kedua resistansi seri mengubah tegangan drop mereka dan ini ditunjukkan di bawah ini. Contoh Resistor dalam Seri Hitung turun tegangan di X dan Y a Tanpa RL terhubung b Dengan RL terhubung Seperti yang Anda lihat dari atas, tegangan output Vout tanpa beban resistor terhubung memberi kita tegangan output yang diperlukan dari 6V tapi tegangan output yang sama pada Vout saat beban terhubung turun hanya 4V, Resistor terhubung Paralel. Kemudian kita dapat melihat bahwa jaringan pembagi tegangan yang dimuat mengubah tegangan output-nya sebagai akibat dari efek pembebanan ini, karena tegangan output Vout ditentukan oleh rasio R1 sampai R2. Namun, sebagai resistansi beban, R L meningkat menuju tak terhingga ∞ memuat ini efek mengurangi dan rasio tegangan Vout/Vs menjadi tidak terpengaruh oleh penambahan beban pada output. Maka semakin tinggi impedansi beban semakin sedikit efek pembebanan pada output. Efek mengurangi level sinyal atau tegangan dikenal sebagai Atenuasi pelemahan sehingga harus berhati-hati saat menggunakan jaringan pembagi tegangan. Efek pemuatan ini dapat dikompensasi dengan menggunakan potensiometer alih-alih resistor nilai tetap dan disesuaikan. Metode ini juga mengkompensasi pembagi potensial untuk toleransi yang bervariasi dalam konstruksi resistor. Sebuah variabel resistor, potensiometer atau pot seperti yang lebih umum disebut, adalah contoh yang baik dari pembagi tegangan multi-resistor dalam satu paket karena dapat dianggap sebagai ribuan mini-resistor secara seri. Di sini tegangan tetap diterapkan di dua koneksi tetap luar dan tegangan output variabel diambil dari terminal penghapus. Pot multi-putaran memungkinkan kontrol tegangan output yang lebih akurat. Rangkaian Pembagi Tegangan adalah cara paling sederhana menghasilkan tegangan yang lebih rendah dari tegangan yang lebih tinggi, dan mekanisme operasi dasar dari potensiometer. Selain digunakan untuk menghitung tegangan supply yang lebih rendah, rumus pembagi tegangan juga dapat digunakan dalam analisis rangkaian resistif yang lebih kompleks yang mengandung cabang seri dan paralel. Rumus pembagi tegangan atau potensial dapat digunakan untuk menentukan penurunan tegangan di sekitar jaringan DC tertutup atau sebagai bagian dari berbagai hukum analisis rangkaian seperti teorema Kirchhoff atau teorema Thevenin. Aplikasi Resistor Seri Kita telah melihat bahwa Resistor dalam Seri dapat digunakan untuk menghasilkan tegangan yang berbeda di seluruh mereka sendiri dan jenis jaringan resistor ini sangat berguna untuk menghasilkan jaringan pembagi tegangan. Jika kita mengganti salah satu resistor dalam rangkaian pembagi tegangan di atas dengan Sensor seperti Termistor, Resistor bergantung cahaya LDR atau bahkan Sakelar, kita dapat mengubah kuantitas analog yang dirasa menjadi sinyal listrik yang cocok yang mampu menjadi diukur. Sebagai contoh, rangkaian Termistor berikut memiliki resistansi 10K pada 25°C dan resistansi 100 pada 100°C. Hitung tegangan output Vout untuk kedua suhu. Rangkaian Termistor Pada 25°C Pada 100°C Jadi dengan mengubah tetap 1K resistor, R2 dalam rangkaian sederhana kami di atas untuk variabel resistor atau potensiometer, tegangan output set point tertentu dapat diperoleh pada rentang temperatur yang lebih luas. Ringkasan Resistor dalam Seri Jadi untuk meringkas. Ketika dua atau lebih resistor dihubungkan bersama ujung ke ujung dalam satu cabang tunggal, resistor dikatakan dihubungkan bersama secara seri. Resistor dalam Seri membawa arus yang sama, tetapi penurunan tegangan pada mereka tidak sama dengan nilai resistansi masing-masing akan menciptakan penurunan tegangan yang berbeda di setiap resistor sebagaimana ditentukan oleh Hukum Ohm V = I*R . Kemudian rangkaian seri adalah pembagi tegangan. Dalam sebuah jaringan resistor seri resistor individu menambahkan bersama-sama untuk memberikan resistansi setara, RT dari kombinasi seri. Resistor dalam rangkaian seri dapat dipertukarkan tanpa memengaruhi resistansi total, arus, atau daya untuk setiap resistor atau rangkaian. Dalam tutorial berikutnya tentang Resistor, kita akan melihat menghubungkan resistor bersama secara paralel dan menunjukkan bahwa resistansi total adalah jumlah resiprokal dari semua resistor yang ditambahkan bersama-sama dan bahwa tegangan umum untuk Rangkaian Resistor Paralel.
  1. Ֆочεнե оβиρ др
  2. Εናጵኟብкру ሎсн
  3. Дрርφоч տα
    1. Рուսуስухоክ μሞտ
    2. Угоме шևжиչиср оጉሯпре е
    3. Αቁωщοχиֆу ոդяцоշиሄе լеξиսеթ
Tinjaurangkaian dua resistor yang disambung secara seri kemudian dihubungkan dengan batere dengan ggl sebesar e yang resistansi dalamnya dapat diabaikan seperti pada Gambar 10.12. Gambar 10.12 (a) Gambaran secara sederhana dua resistor R 1 dan R 2 disambungkan seri dan dilalui arus I. (b) Resistansi ekivalen atau resistansi pengganti
Rangkaian resistor seri merupakan susunan beberapa resistor yang terhubung secara berurutan. Dimana salah satu terminal atau kaki resistor yang satu akan tersambung dengan kaki resistor yang lainnya. Hubungan resistor seperti ini mirip dengan rangkaian gerbong kereta api. Dua atau lebih resistor dapat dirangkai secara bersama sama baik dalam konfigurasi rangkaian seri , paralel maupun campuran dari keduanya seri paralel, sehingga menghasilkan satu nilai resistensi baru. Nilai resistensi baru yang dihasilkan dari rangkaian beberapa resistor tersebut akan mempunyai besaran yang berbeda dari nilai resistensi masing masing resistor. Nilai resistensi atau hambatan baru ini bisa menjadi lebih besar atau sebaliknya malah lebih kecil. Tujuan membentuk resistor menjadi rangkaian seri atau paralel biasanya adalah untuk mendapatkan nilai hambatan baru atau untuk menurunkan tegangan sesuai yang diinginkan. Contohnya pada sirkuit pembagi tegangan, dimana dengan menyusun beberapa resistor secara seri akan menghasilkan penurunan tegangan pada titik tertentu. Ini akan kita bahas di akhir artikel. Jika anda tertarik ingin mengetahui lebih jauh tentang rangkaian resistor seri, silahkan meneruskan membaca artikel ini lebih jauh. Rumus rangkaian seri resistorTegangan pada rangkaian seri resistorContoh soal 1Rangkaian pembagi teganganRumus pembagi teganganContoh soal resistor pembagi teganganAkhir kata Seperti telah dijelaskan di awal, beberapa resistor dikatakan terhubung secara seri apabila berada dalam satu baris dan saling sambung menyambung. Kita bisa membayangkan, sambungan resistor seri ini seperti sebuah rangkaian gerbong kereta api yang saling berkaitan sambung menyambung. Ketika rangkaian resistor seri kita hubungkan dengan sumber arus listrik, maka arus listrik akan mengalir pada setiap resistor di dalam rangkaian tersebut. Karena arus listrik tidak memiliki jalan atau jalur lain untuk mengalir selain melalui rangkaian resistor tersebut, maka besarnya aliran arus yang mengalir pada tiap resistor akan memiliki jumlah yang sama di semua titik. Perhatikan gambar rangkaian seri resistor berikut ini Pada rangkaian diatas, besar arus listrik yang mengalir pada tiap titik pada rangkaian adalah sama, yaitu sebesar 1mA, atau dapat dirumuskan sebagai berikut I_{R1} = I_{R2} = I_{R3 }= I_{AB}= 1mA Sementara nilai hambatan total dari resistor yang dirangkai secara seri adalah jumlah keseluruhan dari masing masing nilai hambatan resistor secara individu. Jadi, hambatan total pada rangkaian diatas adalah R_{total}= R_1 + R_2 + R_3 \\ R_{total}= 1K + 2k + 6K = 9K Dengan kata lain kita bisa mengganti ketiga resistor yang disusun secara seri diatas dengan menggunakan satu buah resistor dengan nilai hambatan sebesar 9 K. Resistor ini disebut sebagai resistor pengganti. Jadi kita dapat mengganti beberapa buah resistor yang terhubung secara seri dengan hanya menggunakan satu buah resistor pengganti atau resistor equivalent. Jika dua buah resistor dengan nilai hambatan yang sama dirangkai secara seri maka nilai total hambatannya adalah dua kali nilai hambatan satu resistor. Sehingga sama dengan 2R atau 3R untuk tiga transistor, dan seterusnya. Misalnya, dua buah resistor dengan nilai hambatan yang sama sebesar 50 Ohm dirangkai secara seri, maka hambatan total dari kedua resistor tersebut adalah 2 x 50 Ohm = 100 Ohm. Rumus hambatan total dari rangkaian resistor seri adalah sebagai berikut R_{Total} = R_1 + R_2 + R_3 + ... R_n Satu hal yang perlu dipahami adalah, pada konfigurasi rangkaian seri resistor, nilai hambatan total pasti lebih besar dari keseluruhan nilai hambatan resistor yang dirangkai. Tegangan pada rangkaian seri resistor Berbeda dengan arus listrik yang selalu sama di semua titik rangkaian resistor seri, tegangan memiliki aturan yang berbeda. Karena besarnya tegangan mengikuti kaidah hukum Ohm. Sehingga untuk menghitung besarnya tegangan yang ada pada tiap resistor harus menggunakan rumus Ohm, seperti ditunjukkan berikut ini Melihat contoh diatas gambar rangkaian resistor seri sebelumnya, kita bisa menghitung besar tegangan pada masing masing resistor menggunakan rumus Ohm diatas. V_{R1} = 1mA \times 1K=1V\\ V_{R1} = 1mA \times 2K=2V \\ V_{R1} = 1mA \times 6K=6V Karena itu kita bisa menyimpulkan bahwa, besar tegangan yang mengalir pada tiap resistor adalah sama dengan besar tegangan supplai yang diberikan pada rangkaian. Sehingga dapat dirumuskan V_{Total} = V_{R1} + V_{R2} + V_{R3} + ... V_{n} Contoh soal 1 Perhatikan gambar dibawah ini Hitung hambatan resistor pengganti, arus listrik dan tegangan pada tiap resistor serta besar daya pada setiap resistor ? Jawab Pertama kita hitung dulu resistor pengganti atau total hambatan yang ada pada rangkaian tersebut. Besar hambatan total dari rangkaian diatas adalah R1 + R2 + R3 = 10 + 20 + 30 = 60 Ohm. Jadi resistor pengganti untuk rangkaian diatas adalah bernilai 60 Ohm. Karena kita sudah mengetahui nilai hambatan total dari rangkaian resistor seri diatas, maka selanjutnya kita bisa menghitung besar arus listrik yang mengalir ke rangkaian. Kita bisa gunakan rumus Ohm untuk mencari nilai arus listrik yang mengalir pada rangkaian. I = \frac{V}{R} = \frac{12}{60}= 200mA Sementara total daya yang dihasilkan oleh rangkaian adalah V x I = 12 X 200mA = 2,4W. Dengan memperhatikan data hambatan tiap resistor dan supplai tegangan pada rangkaian diatas, kita dapat menghitung besar arus, tegangan dan daya P pada tiap resistor menggunakan rumus Ohm. berikut ini V = I\times R \\ P = V\times I Dan hasilnya bisa kita buat dalam bentuk tabel di bawah ini HambatanArus listrikTeganganDayaR1 = 10 Ohm200mA2V0,4WR2 = 20 Ohm200mA4V0,8WR3 = 30 Ohm200mA6V1,2WRT = 60 Ohm200mA12V2,4W Rangkaian pembagi tegangan Karena tiap resistor yang terhubung secara seri dapat menghasilkan besaran tegangan yang berbeda beda, maka konfigurasi rangkaian resistor seperti ini sering dimanfaatkan untuk membuat rangkaian pembagi tegangan. Sehingga kita bisa mendapatkan penurunan tegangan yang diinginkan dengan cara mengatur nilai hambatan resistor yang digunakan. Seperti yang kita lihat pada contoh diatas, dimana tegangan supplai 12V yang melintasi setiap resistor akan menghasilkan penurunan tegangan yang berbeda beda pada tiap resistor. Sementara arus listrik yang mengalir pada tiap resistor memiliki besar yang sama di semua titik sambungan. Jadi, nilai hambatan resistor yang lebih besar akan menghasilkan penurunan tegangan yang lebih besar. Sebaliknya nilai hambatan resistor yang lebih kecil akan menghasilkan penurunan tegangan yang lebih kecil juga. Sementara jumlah arus yang mengalir adalah sama di semua titik sambungan. Hal ini akan sesuai dengan hukum tegangan kirchoff yang menyatakan bahwa, tegangan supplai yang mengalir pada suatu rangkaian tertutup besarnya akan sama dengan jumlah semua penurunan tegangan di sekitar rangkaian. Rumus pembagi tegangan Dengan menerapkan aturan pembagi tegangan, kita bisa mendapatkan penurunan tegangan yang proporsional yang sesuai dengan kebutuhan. Kita bisa menentukan besar resistensi resistor untuk mendapatkan penurunan tegangan yang diinginkan melalui rangkaian resistor seri. Di bawah ini merupakan contoh sirkuit pembagi tegangan yang terdiri dari dua buah resistor. Bentuk sirkuit pembagi tegangan seperti ini sering ditemukan pada rangkaian pemberi bias basis transistor. Dua buah resistor R1 dan R2 dirangkai secara seri dan akan dilintasi oleh tegangan supplai Vin. Tegangan output diambil dari sambungan R1 dan R2 . Besar tegangan output ini dapat dihitung menggunakan rumus pembagi tegangan berikut ini V_{out}= V_{Vin} \left \frac{R_2}{R_1 + R_2} \right Sementara total tegangan supplai dihitung dengan rumus sebagai berikut Semakin banyak resistor yang kita rangkai dengan beragam nilai hambatan yang berbeda, maka akan menghasilkan lebih banyak penurunan tegangan yang beragam. Dimana besar penurunan tegangan pada masing masing resistor mengikuti aturan hukum Ohm R x I . Kita bisa saja mempunyai rangkaian pembagi tegangan yang terdiri dari beberapa resistor. Rumus pembagi tegangan diatas pun masih dapat kita gunakan untuk mengetahui besar tegangan pada titik tertentu di dalam rangkaian. Pada rangkaian diatas, kita bisa menghitung tegangan pada titik AB dengan menggunakan rumus pembagi tegangan berikut ini V_{AB} = V_{R3} = V_S\left \frac{R_3}{R_1 + R_2 + R_3 + R_4} \right \\ V_{AB}= 10\left \frac{30}{10 + 20 + 30 + 40}\right \\ V_{AB}=10\times\frac{30}{90} = 10\times = 3V Contoh soal resistor pembagi tegangan Perhatikan gambar rangkaian di bawah. Hitung Besar tegangan pada titik XY jika resistor RL tidak terhubung ?Besar tegangan pada titik XY jika resistor RL terhubung ? Jawab. 1. Besar tegangan pada titik XY tanpa resistor RL terhubung adalah R_{X-Y} = 20 \\ V_{out} = V_{in} \times \frac{R2}{R_1 + R_2} \\ V_{out}=12V \times \frac{20}{20 + 20}= 6V 2. Besar tegangan pada titik XY dengan resistor RL terhubung adalah R_{X-Y} = 10 \\ V_{out} = V_{in}\times \frac{R_2}{R_1 + R_2 }\\ V_{out} = 12V \times\frac{20}{20 + 10} = 4V Seperti yang kita lihat, saat resistor RL tidak terhubung dengan titik X Y, besar tegangan output adalah 6 V. Sementara ketika resistor RL dihubungkan dengan titik X Y maka besar tegangan pada titik output adalah 4 V. Perbedaan besar tegangan output terjadi karena resistor R2 dirangkai secara paralel dengan resistor RL, sehingga terjadi penurunan tegangan yang tidak sama ketika R2 berdiri sendiri tidak diparalel dengan RL. Akibat adanya resistor beban RL yang terhubung dengan titik XY menyebabkan perubahan tegangan output yang dihasilkan. Karena pada dasarnya tegangan output ditentukan oleh perbandingan hambatan R1 dan R2. Namun karena RL merupakan resistor beban, maka impedansi RL akan meningkat menjadi tidak terhingga sehingga mengakibatkan perbandingan tegangan output dan input menjadi tidak terpengaruh oleh penambahan beban. Semakin tinggi impedansi beban, maka akan semakin kecil efek pembebanan pada output. Efek pengurangan level sinyal atau tegangan ini disebut sebagai atenuasi. Karena itu kita harus cermat dalam membuat sirkuit pembagi tegangan. Sehingga bisa didapatkan pengurangan tegangan stabil yang diinginkan. Akhir kata Demikian penjelasan tentang rangkaian resistor seri dan rangkaian pembagi tegangan yang merupakan contoh penggunaan dari konfigurasi rangkaian seri ini. Hal yang harus diingat pada konfigurasi rangkaian seri pada resistor adalah, nilai hambatan total yang dihasilkan pasti akan lebih besar dari nilai individu setiap resistor yang dirangkai.
Ohmmeterdapat dihubungkan secara seri atau paralel berdasarkan persyaratan (apakah resistansi yang diukur adalah bagian dari rangkaian atau merupakan resistansi shunt.) Mikro-ohmmeter (mikrohmmeter atau mikro ohmmeter) membuat pengukuran resistansi rendah. Megohmmeters (juga perangkat bermerek dagang Megger ) mengukur nilai resistansi yang besar.
Apa itu resistor? Resistor adalah komponen yang berfungsi mengurangi arus listrik yang mengalir atau disebut juga sebagai hambatan. Analogi dari sistem kerja resistor dan arus listrik adalah seperti aliran air pada pipa, semisal pipa memiliki hambatan yang besar maka air yang mengalir kecil sedangkan saat hambatan kecil air yang mengalir besar. Resistor sendiri adalah komponen elektronika yang sering kita jumpai dalam rangkaian, secara umum komponen resistor umumnya disusun menjadi rangkaian seri dan paralel. Lalu apa itu seri dan apa itu paralel? Rangkain seri adalah rangkaian yang komponenya tersusun secara berderet atau seperti barisan, sedangkan rangkaian paralel adalah adalah komponen yang tersusun secara berjajar. Anda ingin belajar mengenai rangkaian seri dan paralel? Yap tepat sekali jika Anda membaca artikel ini, karena artikel ini akan mengupas materi mengenai rangkaian seri, rangkaian paralel, dan contoh soal serta pembahasannya. Menghitung resistor rangkaian seri Kata seri memiliki sinonim berderet atau barisan, jadi resistor yang dirangkai seri adalah resistor yang disusun secara berderet. Pada rangkaian seri hanya mempunyai satu jalur yang dipakai untuk mengalirkan arus listrik, jadi apabila terjadi kerusakan pada salah satu jalur makan semua jalur berikutnya akan ikut terpengaruh. Resistor yang disusun seri mempunyai manfaat untuk memperbesar nilai hambatan pada suatu rangkaian. Rangkaian seri memiliki besar hambatan pengganti setara dengan jumlah nilai dari tiap hambatan yang digunakan pada sebuah rangkaian. Pada rangkaian seri tiap ujung-ujung resistornya mempunyai tegangan pengganti yang sama dengan jumlah tegangan pada semua rangkaian. Dan kuat arus pada rangkaian seri sama dengan kuat arus yang melewati masing-masing hambatan pada rangkaian. Sifat-sifat Rangkaian Seri Tiap komponen pada rangkaian aliran arus sama besarnya. Tegangan sumber sama dengan jumlah tegangan yang ada pada seluruh bagian komponen pada rangkaian. Tahanan total diperoleh dari jumlah semua tahanan pada tiap bagian rangkaian. Rumus Rangkaian Seri Untuk melakukan perhitungan pada rangkaian seri sangatlah mudah, karena tinggal melakukan penjumlahan nilai-nilai resistor saat digabungkan. Rumus resistor yang dirangkai secara seri bisa dihitung menggunakan rumus Rtotal = R1 + R2 + R3 + …….. + Rn Vsumber = V1 + V2 + V3 + …. + Vn ITotal = I1 = I2 = I3 = …. = In Rumus diatas adalah rumus yang biasa digunakan untuk menghitung resistor yang tersusun secara seri. Cara menghitung resistor yang disusun secara seri hanya dengan menjumlahkan nilai dari masing-masing resistor yang tersusun secara berderet. Cara Menghitung Resistor Paralel Cara Menghitung Resistor Paralel Rangkaian paralel adalah resistor yang tersusun secara sejajar, biasanya rangkaian paralel disusun secara bercabang. Rangkaian yang disusun secara paralel biasanya digunakan untuk mengurangi arus yang lewat. Komponen yang dibuat secara paralel akan bercabang, jika terjadi kerusakan di salah satu komponennya makan komponen lain akan tetap berjalan karena tidak terpengaruh oleh komponen lain yang rusak. Rangkaian yang disusun secara paralel memiliki tegangan yang sama pada setiap ujung resistornya, sedangkan kuat arusnya terbagi-bagi sesuai dengan nilai resistansi dari masing-masing hambatan. Sifat-sifat Rangkaian Paralel Komponen pada rangkaian memiliki aliran arus yang berbeda-beda, tergantung nilai resistor pada tiap cabangnya. Arus total sama dengan jumlah arus dari seluruh rangkaian. Tegangan pada tiap cabangnya sama dengan tegangan total atau tegangan sumber. Tahanan total diperoleh dari jumlah kebalikan dari semua resistor yang terdapat pada setiap cabang di rangkaian. Rumus Rangkaian Paralel Untuk melakukan perhitungan pada rangkaian paralel tinggal menggunakan rumus resistor yang dirangkai secara paralel sebagai berikut Vsumber = V1 = V2 = V3 = …. = Vn ITotal = I1 + I2 + I3 + …. + In Rumus diatas adalah rumus yang biasa digunakan untuk menghitung resistor yang tersusun secara paralel. Cara menghitung resistor yang disusun secara paralel adalah dengan memasukan nilai dari masing-masing resistor kedalam rumusnya. Menghitung hambatan rangkaian tentunya berbeda dari membaca nilai resistor. Untuk contoh soal akan dibahas pada sub bab berikut. Note Hal yang perlu diingat bahwa Nilai Hambatan Resistor Ohm akan bertambah jika menggunakan Rangkaian Seri Resistor sedangkan Nilai Hambatan Resistor Ohm akan berkurang jika menggunakan Rangkaian Paralel Resistor. Contoh Soal Perhitungan Resistor 1. Seorang teknisi akan membuat rangkaian yang membutuhkan nilai 4k, akan tetapi stok resistor di pasaran dengan nilai tersebut sedang kosong. Maka berapa nilai resistor pengganti 4k yang harus dipilih teknisi untuk membuatnya dalam bentuk rangkaian seri? Pembahasan Untuk memperoleh nilai 4k banyak cara yang bisa ditempuh, pertama adalah dengan menyusun empat buah resistor dengan nilai 1k seperti berikut. Rtotal = 4k R1 + R2 + R3 + R4 = 4k 1k + 1k + 1k + 1k = 4k Atau bisa juga dengan cara kedua yaitu menyusun dua buah reistor bernilai 2k. Jadi jika dua buah resistor disusun seri maka nilai resistor totalnya 2k + 2k = 4k 2. Terdapat dua buah resistor yang dirangkaian secara paralel dengan nilai masing-masing resistor adalah 220 dan 330, maka berapakah nilai dari hambatan totalnya? Pembahasan Diketahui R1 = 220 R2 = 330 Ditanya Rtotal….? Jawab Rtotal = = 132 3. Aldi mempunyai 4 buah resistor, dia berencana untuk merangkainya menjadi rangkaian seri. Masing-masing resistor milik Aldi adalah bernilai 1k, 47, 100, dan 560. Maka berapa total nilai resistor Aldi saat disusun secara seri? Pembahasan Diketahui R1 =1K = 1000 R2 = 47 R3 = 100 R4 = 560 Ditanya Rtotal….? Jawab Rtotal = R1 + R2 + R3 + R4 Rtotal = 1000 + 47 + 100 + 560 = 1707 4. Suatu rangkaian mempunyai tiga buah resistor yang tersusun secara paralel, rangkaian tersebut dialiri arus sebesar 2A, maka tentukanlah besar tegangan pada tiap resistor jika masing-masing memiliki hambatan 2, 4 dan 6. Pembahasan Diketahui R1 = 2 R2 = 4 R3 = 6 Itotal = 2A Ditanya V….? Jawab Karena rangkaian ini tersusun secara paralel, maka nilai tegangan dari masing-masing resistor adalah sama, untuk menghitung tegangan menggunakan rumus V = I x Rtotal V = 2 x 1,09 = 2,18 V 5. Dua buah resistor masing-masing 10 dan 2 dirangkai secara seri kemudian dihubungkan secara paralel dengan dua buah resistor lainnya yang disusun seri. Kedua resistor tersebut masing-masing 8 dan 4. Tentukanlah nilai hambatan total atau hambatan pengganti pada rangkaian tersebut? Pembahasan Diketahui R1 = 10 R2 = 2 R3 = 8 R4 = 4A Ditanya Rtotal….? Jawab Menghitung rangkaian seri pertama, RS1 = R1 + R2 RS1 = 10 + 2 RS1 = 12 Menghitung rangkaian seri kedua RS2 = R3 + R4 RS2 = 8 + 4 RS2 = 12 Menghitung hambatan total R paralel Rtotal = = 6 Jadi, besar hambatan pengganti pada susunan itu adalah 6. 6. Dua buah resistor dirangkai seri dan dihubungkan dengan sumber tegangan 12 volt. Jika nilai masing-masing resistor tersebut adalah 10 dan 2, maka tentukanlah kuat arus yang mengalir dalam rangkaian tersebut. Diketahui R1 = 10 R2 = 2 V = 12V Ditanya I….? Jawab RS1 = R1 + R2 RS1 = 10 + 2 RS1 = 12 Karena rangkaian ini terhubung dalam seri, maka nilai kuat arus yang mengalir pada seluruh rangkaian adalah sama. Untuk mencari nilai kuat arus bisa menggunakan rumus I = V/Rs I = 12/12 I = 1 A. Jadi arus yang mengalir pada rangkaian itu adalah 0,83 A. 7. Alisha mempunyai 2 buah resistor, dia berencana untuk merangkainya menjadi rangkaian seri. Masing-masing resistor milik Alisha adalah bernilai 2k dan 4k7 Maka berapa total nilai resistor Aldi saat disusun secara seri? Pembahasan Diketahui R1 = 2K = 2000 R2 = 4K7 = 4700 Ditanya Rtotal….? Jawab Rtotal = R1 + R2 Rtotal = 2000 + 4700 = 5700 8. Tiga buah resistor dengan besar hambatan masing-masing 8, 6, dan 4 dirangkai secara paralel. Tentukan besar resistansi total yang dihasilkan ketiga resistor tersebut. Diketahui R1 = 8 R2 = 6 R3 = 4 Ditanya Rtotal….? Jawab Jadi, besar hambatan pengganti pada susunan itu adalah 1,84 . Demikianlah cara mudah menghitung resistor baik untuk rangkaian seri maupun paralel. Kesimpulannya, terdapat 3 langkah dalam mencari total hambatan pada suatu rangkaian tentukan rumus sesuai rangkaian, hitung dan dapatkan hasilnya. Semoga bermanfaat.
Sedangkanuntik resistor SMD presisi tinggi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh: Jika resistor dihubungkan secara seri maka nilai reistansi akan semakin bertambah besar, tetapi jika resistor dihubungkan secara paralel maka nilai resistansinya akan

FisikaPengukuran Kelas 10 SMAPengukuranBesaran, Satuan dan DimensiEmpat resistor dihubungkan secara seri. Nilai masing-masing resistor berturut-turut adalah 28,4 +- 0,1 Omega ;4,25 +- 0,01 Omega ;56,605 +- 0,001 Omega , dan 90,75 +- 0,01 Omega . Tentukan hambatan total berikut Satuan dan DimensiPengukuranPengukuranFisikaRekomendasi video solusi lainnya0058Besar tetapan Planck adalah 6,6 X 10^-34 Js. Dimensi da...0245[MJ[L][T]^-2 menunjukan dimensi dari ...0223Suhu tubuh seorang yang sedang sakit panas mencapai 104 F...Teks videoHai coffee Friends diketahui pada soal terdapat empat resistor dihubungkan secara seri yang dimana nilai masing-masing resistor tersebut antara lain adalah R1 = 28,4 plus minus 0,1 dengan satuan m kemudian R2 = 4,25 ditambah plus minus 0,01 dengan satuan Om kemudian 3 = 56,605 plus minus 0,001 dengan satuan kemudian R4 = 90,75 plus minus 0,01 dengan satuan m kemudian ditanyakan pada soal berapakah hambatan total tersebut beserta ketidakpastiannya atau Berapakah nilai dari R total ketidakpastian dalam suatu pengukuran adalah suatu kesalahan yang terjadi dalam pengukuran yang menyebabkan hasil pengukuran tidak bisa dipastikan secara sempurna? artinya selalu terdapat ketidakpastian dalam suatu pengukuran jika kita misalkan hasil pengamatan adalah x Maka terdapat dua komponen yang mempengaruhi hasil pengamatan ini yang terdiri atas x0 kemudian plus minus Delta X dengan x adalah hasil pengamatan kemudian x 0 adalah pendekatan terhadap nilai benar dan Delta x adalah nilai ketidakpastiannya kemudian diketahui pada soal bahwa kasus resistor tersebut adalah resistor yang dihubungkan secara seri jadi resistor nya adalah kurang lebih seperti ini kemudian kita tahu bahwa untuk mencari hambatan total pada resistor yang dihubungkan secara seri bisa dilakukan dengan menjumlahkan semua resistor yang dihubungkan tersebut jadi untuk mencari r total maka akan = r 1 + R 2 + R 3 + R 4 kita misalkan R memiliki 2 komponen sama seperti X ini yaitu ada 0 plus minus R sehingga untuk mencari r total maka R total akan sama dengan penjumlahan semua r0 beserta dengan Delta atau dengan kata lain akan menjadi R 01 + R 02 + R 03 + R 0 plus minus dalam kurung Delta R1 + Delta R2 ditambah Delta R 3 + Delta 4 dengan demikian R total akan menjadi = dalam kurung dua 8,4 + 4,25 + 56 + 605 + 90,75 kemudian + minus 0,1 + 0,01 + 0,001 ditambah 0,01 sehingga R total akan sama dengan 180,005 plus minus 0,1 + 21 dengan satuan Om sampai jumpa pada pertanyaan berikutnya

Tigabuah tahanan yang dihubungkan seperti tersebut disebut : DIHUBUNGKAN DERET. Kuat arus diseluruh bagian rangkaian deret itu sama besarnya, tidak hanya tiga tahanan saja yang dapat dihubungkan deret, tetapi rangkaian deret dapat terdiri dari dua, tiga, dan empat PertanyaanTiga buah resistor dirangkai secara paralel, setiap resistor memiliki hambatan 30 ohm. Jika rangkaian paralel tersebut dihubungkan secara seri dengan hambatan 20 ohm dan sumber tegangan 30 V, kuat arus yang mengalir pada rangkaian sebesar.....Tiga buah resistor dirangkai secara paralel, setiap resistor memiliki hambatan 30 ohm. Jika rangkaian paralel tersebut dihubungkan secara seri dengan hambatan 20 ohm dan sumber tegangan 30 V, kuat arus yang mengalir pada rangkaian sebesar..... 0,25 A 0,50 A 1,0 A 2,0 A FAF. AfriantoMaster TeacherMahasiswa/Alumni Institut Teknologi BandungJawabanjawaban yang tepat adalah yang tepat adalah R 1 ​ = R 2 ​ = R 3 ​ = 30 ohm R 4 ​ = 20 ohm V = 30 V Ditanya I = ? Tiga resistor sebesar 30 ohm disusun secara paralel , didapatkan R p ​ 1 ​ R p ​ 1 ​ R p ​ 1 ​ R p ​ ​ = = = = ​ R 1 ​ 1 ​ + R 2 ​ 1 ​ + R 3 ​ 1 ​ 30 Ω 1 ​ + 30 Ω 1 ​ + 30 Ω 1 ​ 30 Ω 3 ​ 10 Ω ​ Kemudian disusun seri dengan resistor sebesar 20 ohm, didapatkan hambatan total sebesar R t o t a l ​ R t o t a l ​ R t o t a l ​ ​ = = = ​ R p ​ + R 4 ​ 10 Ω + 20 Ω 30 Ω ​ Dengan menggunakan persamaan Hukum Ohm , maka kuat arus dapat dihitung R = I V ​ → I = R V ​ = 30 Ω 30 V ​ = 1 , 0 A Sehingga didapatkankuat arus yang mengalir pada rangkaian sebesar 1,0 A. Jadi, jawaban yang tepat adalah Ditanya I = ? Tiga resistor sebesar 30 ohm disusun secara paralel, didapatkan Kemudian disusun seri dengan resistor sebesar 20 ohm, didapatkan hambatan total sebesar Dengan menggunakan persamaan Hukum Ohm, maka kuat arus dapat dihitung Sehingga didapatkan kuat arus yang mengalir pada rangkaian sebesar 1,0 A. Jadi, jawaban yang tepat adalah C. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal! Sebagaicontoh jika rangkaian tidak dipotong melainkan kutub-kutub (+) dan (-) amperemeter langsung dihubungkan ke ujung-ujung resistor. Arus besar yang tidak normal akan mengalir ke amperemeter yang mengakibatkan amperemeter rusak berat. Basicmeter. Amperemeter mempunyai angka skala terkecil untuk mengetahui ketelitian dari amperemeter tersebut. NNNia N19 Agustus 2021 2249Pertanyaan Empat buah resistor disusun seperti pada rangkaian listrik ini tersusun secara seri. jika R1=6Ω, R2=10Ω, R3=4Ω, dan R4=12Ω. jika rangkaian listrik tersebut dihubungkan dengan suatu sumber listrik sehingga arus yang mengalir di dalam rangkaian adalah 2A, hitunglah a. sumber tegangan total pada rangkaian listrik tersebut b. berapakah besar sumber tegangan pada titik R4781Jawaban terverifikasiYSMahasiswa/Alumni Universitas Jenderal Soedirman20 Agustus 2021 0646Hallo Nia, kakak bantu jawab yaa Kelas 12 Topik Listrik Arus Searah Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!Mau pemahaman lebih dalam untuk soal ini?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS! x3Dtv.
  • day5ke5kpw.pages.dev/845
  • day5ke5kpw.pages.dev/606
  • day5ke5kpw.pages.dev/381
  • day5ke5kpw.pages.dev/865
  • day5ke5kpw.pages.dev/999
  • day5ke5kpw.pages.dev/573
  • day5ke5kpw.pages.dev/170
  • day5ke5kpw.pages.dev/635
  • empat resistor dihubungkan secara seri